mkmod

Willem A. Schreüder Principia Mathematica August 2011

What is mkmod

- Program to build MODFLOW input files for the ESPAM model
- Replaces the *readinp.for* program used with ESPAM 1.x
 - "Tail end" of the recharge tool
- Operates at the entity-model cell level
 - Maps entity level inputs to model cells
 - Time increments are stress periods (months)

What is new in mkmod

- Implements new algorithms for calculating recharge and pumping
 - On farm algorithm
 - Soil Moisture Accounting
 - Returns calculated instead of specified
- Adds output options
 - Steady state initial stress period
 - Separate recharge and well packages
 - Summary tables

Whom to blame for mkmod

- Greg Sullivan (on farm algorithms)
- Willem Schreüder (implementation)
- Jim Brannon (peer review)
- Allan Wylie (user testing)
- David Blew (just because we always blame him for everything)

mkmod inputs

- Command line options
 - Controls algorithms, file names, etc.
- mkmod control file (.mdl)
 - Specifies model dimensions, units, periods,...
- Data files
 - Output from other tools that pre-process data
 - Input data such as efficiencies

mkmod outputs

- MODFLOW input files
 - Net recharge a.k.a. "well term"
 - Individual water budget items
- Summary tables
 - HTML table by period and entity
- Diagnostic outputs
 - Acres by cell, ...
 - User specified summeries

mkmod flow chart

- Read definitions and time invariant data
- Loop over periods
 - Read data for current period
 - Calculate irrigated recharge/pumping
 - Calculate non-irrigated recharge
 - Distribute canal seepage
 - Distribute trib underflow and perched river
 - Save data

Irrigated recharge/pumping

- Applied water by entity
 - Diversion-Canal Seepage+Off-site Pumping
- Loop over entities
 - Loop over gravity & sprinkler lands
 - Loop over cells
 - Calculate CIR, pumping recharge, soil moisture
 - Algorithms depend on command line switches
 - GW and SW treated differently
 - Done on unit area basis, then multiply by acres
 - Accumulate irrigated acres

Crop Irrigation Requirement (CIR)

- Done by cell under the entity
- Adjusted ET = ETadj(Gr/Sp) * ET(Cell)
- Precip = Precip(Cell)
- CIR = Adjusted ET Precip

For Groundwater Entities

- If CIR<0, pumping = 0
- Else pumping = CIR/Efficiency(Gr/Sp)
- Recharge = Pumping CIR
- Notes
 - If CIR<0, Recharge = -CIR
 - Net Recharge = -CIR = Recharge-Pumping
 - Recharge = Precip + (1-Eff)*Pumping
 - Soil moisture never changes

For Groundwater Entities

- If CIR<0, pumping = 0
- Else pumping = CIR/Efficiency(Gr/Sp)
- Recharge = Pumping CIR
- Notes
 - If CIR<0, Recharge = -CIR
 - Net Recharge = -CIR = Recharge-Pumping
 - Recharge = Precip + (1-Eff)*Pumping
 - Soil moisture never changes

SW Entities - On Farm Algorithm

- Determine over/under irrigation
 - deficit is the amount of under irrigation
 - excess is the amount of over irrigation
- Adjust soil moisture of deficit/excess
- Recharge = DPin*(1-Eff)*Applied + DPex*Excess
- Runoff = (1-DPin)*(1-Eff)*Applied+(1-DPex)*Excess
- Notes
 - When deficit>0, CIR is not met (ET shorted)
 - When excess>0, Actual Efficiency < Eff(Gr/Sp)

Deficit/Excess Calculation (SW)

- NetApp = Eff(Gr/Sp)*Application CIR
 - if NetApp>0, excess = NetApp, deficit=0
 - if NetApp<0, excess = 0, deficit = -NetApp</p>
- Optional Soil Moisture Adjustment
 - SMsink = field capacity soil moisture
 - SMsource = soil moisture wilting point
 - If deficit>0 & SMsource>0
 - SMchange = min(SMsource, deficit)
 - deficit = deficit + SMchange
 - If excess>0 & SMsink>0
 - SMchange = min(SMsink,excess)
 - excess = excess SMchange

SW Entities – V1.x Algorithm

- Recharge = Application CIR
- Notes
 - Assumes Runoff/Returns are known and subtracted from Applied Water
 - Application efficiency could be 100%
 - Needs manual adjustment to avoid negatives
 - Eff*Applied>=CIR, On Farm algorithm gives the same result, but uses DPex & DPin to partition overage to recharge and runoff

Irrigated Entity Summary

- GW pump to meet CIR
 - SM constant, net pumping=ET-precip
- SW Apply Diversion–Leakage+Pumping
 - SM adjusted for excess or deficit
 - Recharge fixed fraction of applied water plus fixed fraction of an excess
 - Runoff fixed fraction of applied water plus fixed fraction of excess
 - Deficit shorts ET
- Cell by cell for all entities, Sprinkler/Gravity

mkmod flow chart

- Read definitions and time invariant data
- Loop over periods
 - Read data for current period
 - Calculate irrigated recharge/pumping
 - Calculate non-irrigated recharge
 - Distribute canal seepage
 - Distribute trib underflow and perched river
 - Save data

Non-irrigated recharge

- Area = Cell Area Irrigated Area
 - Calculated when doing irrigated recharge
- Loop over all active cells
 - Recharge = Factor(soil) * NIR * Area

Fixed point & off-site terms

- Loop over all locations
 - Add term to budget
 - Location specified by model cell
 - Budget term specified in .mdl file
 - Wetlands is a special case and have an adjustment factor (currently 1)

Canal Seepage

- Volume specified as total for entity
- Location specified as a list of model cells
- Volume is distributed uniformly to cells

Tributary Underflow & Perched River Seepage

- Volumes specified by reach
- Scale factor for each reach
- Location specified as a list of cells
- Distribute uniformly to cells in reach

Output

- Recharge, pumping, etc are accumulated on a cell by cell basis
 - Net Recharge "well term" is the sum of all arrays on a cell by cell basis
 - Arrays can be saved individually or as sum
- Budget terms are accumulated for each irrigation entity
 - Summarized for all SW and GW entities and by entity in the HTML table

Steady State

- Steady State stresses are average of sequence of stress periods
 - Currently 229 (May 1999) to 240 (April 2000)
- mkmod can calculate this average and save it as the first stress period
 - Combines steady state and transient into one MODFLOW run
 - Requires more memory

Running mkmod

- Written in Perl, so needs a Perl interpreter
- Mac OS/X, Unix, Linux
 - mkmod <options and parameters>
- Windows
 - Invoke perl explicitly
 - perl mkmod <options and parameters>
 - Compile to EXE using PAR-packer

Production mode command line

- mkmod -ss E110712A
 - Parameter -ss omits steady state, saves only "well term" and requires only 72MB RAM
 - Input files are named E110712A.*
 - Output file is E110712A.net
 - Run time about 10 minutes

Input files with data that apply to all periods in the simulation

- .mdl Model units, dimensions, periods, ...
- .cel Active cells and cell areas
- .sol Soil type for non-irrigated recharge
- .red Reduction factors (Gravity, Sprinkler)
- .eff On Farm parameters Eff,DPin,DPex,...

Input files with data by Entity

(Header + data set for each stress period)

- .ent Entity names; sprinkler fractions
- .iar Irrigated acres by cell
- .div Diversions and returns
- .cnl Canal leakage
- .fpt Fixed point pumping
- .off Off-site pumping
- .pch Perch river seepage
- .trb Tributary underflow

Input files with cell arrays

(no header, just array of values for each stress period)

- .pre Precipitation
- .eti Evapotranspiration
- .nir Non-irrigated recharge

Model Input File (.mdl)

(See annotated mdl file for details)

- Run title (shown in HTML)
- Units
- Stress periods
- Dimensions
- Adjustment factors
- Fixed point definitions
- Debug output
- Minimum non-irrigated area

Cells (.cel) and Soil Types (.sol)

- cel file
 - IBOUND array (1=active,0=inactive)
 - Area by cell (5280 x 5280)
- .sol file
 - Soil index for non-irrigated recharge
 - 1-max (max <= number of soils in .mdl)
 - Dead cells are ignored

ET Reduction Factors (.red)

- Row 1: gravity reduction factor
- Row 2: sprinkler reduction factor
 - Should be a fraction (0=none)
 - One value per stress period

On Farm Factor File (.eff)

- One row for each entiry
 - Name
 - Maximum efficiency gravity (0-1)
 - Maximum efficiency sprinkler (0-1)
 - DPin (Deep perc fraction of applied water)
 - DPex (Deep perc fraction of excess water)
 - Wilting point
 - Field Capacity
 - Depth of rooting zone

Entity File (.ent)

- Header
 - Entity Identifier (e.g. IESW029)
 - Entity type (SW/GW)
 - ET Adjustment Sprinkler
 - ET Adjustment Gravity
 - Display name
- For each stress period
 - Sprinkler Fraction (one value per entity)

Irrigated Area File (.iar)

- No Header
- For each stress period
 - List of cells (row,col,count)
 - List of entities in that cell
 - List of areas (one per entity)
- Many stress periods repeat previous data

Diversions (.div)

- Header
 - Row listing entities
- Each Stress Period
 - Row of diverted amounts (cubic feet)
 - Row of returns (cubic feet)
 - Returns are zeroed when returns are calculated

Canal Leakage (.cnl)

- Header
 - #Cells, Adjustment, Identifier, Text Name
 - Row Column (rest of row is not used)
 - Could be used to weight spatially
- For each stress period
 - Canal leakage fraction (of diversion)

Fixed Point [Pumping] (.fpt)

- Header
 - Type Layer Row Column Name
 - Current types
 - W Wetlands
 - U Urban Pumping
 - E Exchange Pumping
 - M Mud Lake Pumping
- Stress periods
 - Row of values, one per entry (cubic feet)

Off-site Pumping (.off)

- Header
 - Layer Row Column Entity Name
- For each stress period
 - Row of volumes, one per well (cubic feet)

Tributary Underflow (.trb) Perched river seepage (.pch)

- Header
 - #Cells Factor Name
 - Row Col
- For each stress period
 - Row of volumes per reach (cubic feet)

Precipitation (.pre) Evapotranspiration (.eti) Non-irrigated Recharge (.nir)

- No Header
- For each stress period
 - Array of values for every cell (depth in feet)
 - Values in dead cells are ignored
 - Values adjusted for irrigated/non-irrigated area as appropriate

Command Line

- mkmod [parameters] fileroot fileroot sets default file root for input and output files
 - -o sets alternate output file root
 - --xxx sets alternate input file name, where xxx is he file extension (e.g. --ent foo.ent)
 - -a save service areas (entityname.dat)
 - -s single output file ('well term')
 - -ss No steady state, single output file
 - -S No steady state, separate output files
 - -sss Production mode only output is well file

Command Line Option -m

- FRS (default): Maximum Farm Efficiency using Runoff for Returns and Soil Moisture
- 1: ESPAM 1.1
- MFE: Maximum Farm Efficiency using Fixed Returns
 - ESPAM 1.1 with on farm
- FER: Maximum Farm Efficiency using Runoff for Returns
 - FRS without soil moisture

Output files (-s)

- Net recharge ['well term'] (.net)
 - MODFLOW well file format (k,i,j,q)
- Summary table (.htm)
 - Summarizes input and output by groups and by entity by stress period
- Summary table (.dat)
 - Main summary table for plotting
- Return flows (.rfl)
- Debug output (.rfx)

Output files (separate terms)

- .ppt precipitation recharge
- .can canal seepage
- .tri tributary underflow
- .gwr groundwater deep percolation
- .swr surface water deep percolation
- .wel well pumping

Output Files (acreage)

- .AGWgr Groundwater Gravity Acres
- AGWsp Groundwater Sprinkler Acres
- ASWgr Surface Water Gravity Acres
- ASWsp Surface Water Sprinkler Acres

Summary Table Contents (.htm)

- Title and definitions
- Total Non-irrigated, GW & SW by period
- Average values by GW entity
- Individual GW entities by period
- Average values by SW entity
- Individual SW entities by period
- See example file for individual fields
- Column numbers correspond to .dat file

Programing Notes 1

- Major functions
 - Read read next non blank/comment line
 - ReadLine Read & split on spaces
 - ReadCSV Read array from CSV file
 - Open open file and read header
 - Next read next period from file
 - Average Average summary values
 - SaveCell save stresses in cell format
 - SaveArea save stresses in array format

Programming Notes 2

- Major Variables
 - Input Data Structures
 - x{type}{...}
 - Structure varies by input data type
 - Output arrays
 - out{type}[period][cell]
 - Volumes (converted to rates when saving)
 - Summary tabes
 - sum[period]{entity}{type}